Abstract
This work presents the investigation and improvement on curve negotiation performance of suspended monorail vehicle considering a flexible guideway. First, a spatial train–guideway interaction model of suspended monorail system (SMS) is established based on the secondary development of ANSYS software. Then, the dynamic analysis of the train over the flexible curved guideway is conducted, and the curve negotiation performance of the vehicle and the guideway vibration feature are revealed. Subsequently, several crucial design parameters that significantly influence the curve negotiation performance of the vehicle are found, and their influences on the train–guideway dynamic responses are systematically investigated. Finally, by comprehensively considering the dynamic indexes of the vehicle–guideway system, the optimal ranges of these crucial design parameters are obtained. Results show that decreasing the radial stiffness of guiding tyre can effectively reduce the lateral vibration levels of vehicle and guideway, but it would increase the lateral displacements of the bogie and hanging beam; and the radial stiffness is finally suggested to be around 1[Formula: see text]kN/mm by comprehensively considering all dynamic indexes. Increasing the initial compression displacement of guiding tyre can well limit the lateral displacements of the bogie and the hanging beam, thus enhancing the train running safety; however, it would intensify the vehicle-guideway lateral vibration level; especially, the optimal initial compression displacement of guiding tyre is related to its radial stiffness characteristics. To ensure a good curve negotiation performance of vehicle and guideway vibration level, the stiffness of the anti-roll torsion bar and the initial gradient angle of the installed trapezoid four-link suspended device are suggested to be 1.0[Formula: see text]MNm/rad and 65–[Formula: see text], respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Structural Stability and Dynamics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.