Abstract

This paper improves an inverted decoupling technique for a class of stable linear multivariable processes with multiple time delays and nonminimum-phase zeros. Two decoupling schemes are proposed based on the inverted decoupling technique. One is a developed inverted decoupling scheme. In this scheme, the decoupler is designed such that the inverted decoupling technique accommodates a wider field than the one introduced in the published literature. However, due to the stability issue, some multivariable processes still cannot be decoupled by the inverted decoupling structure. To solve this problem, another modified decoupling scheme with unity feedback structure is suggested for implementation. The Internal Model Control (IMC) theory is applied here to design PI/PID controllers for the decoupled processes. Furthermore, in the presence of multiplicative input uncertainty, low bounds of the control parameters are derived quantitatively for guaranteeing robust stability of the system. Simulations are illustrated for demonstrating the validity of the proposed control schemes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call