Abstract
When the sinusoidal vibration waveform is required, the problems of low vibration frequency and low energy efficiency severely restrict the application of conventional uniaxial electro-hydraulic shaking tables (UEHSTs) individually controlled by a standard servo valve. To solve these problems, a novel UEHST jointly controlled by a rotary valve and a standard servo valve is designed in this paper. The rotary valve is proposed to overcome the structure limitation of the slide valve and improve the vibration frequency with high spool rotation speed. The servo valve is applied to make the UEHST always work in the resonance region and improve the energy efficiency with resonance. The mechanism of the designed UEHST is investigated numerically based on the mathematical model. The results show that the designed UEHST can output sinusoidal vibration waveform with higher vibration frequency and higher energy efficiency than the conventional UEHST. The vibration frequency can reach 180 Hz and the energy efficiency can reach 75% when the total harmonic distortion of the vibration waveform is less than 1%. The amplitude of the vibration waveform can be adjusted from 0 to 0.6 mm at high vibration frequency and high energy efficiency.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.