Abstract

The prediction accuracies of the two-phase heat transfer coefficient for the flow in a small channel, which are usually based on the mean absolute error (MAE) between the correlation and experimental data, have remained unsatisfactory. Conventionally, the regression method has been used to determine the correlation that best represents the experimental data. In this paper, an improved heat transfer correlation for the evaporation of propane is developed by applying the genetic algorithm method. A total of 789 data points from 4 sources with circular diameters ranging from 1.0 to 6.0 mm are used to minimise the MAE while searching for the optimum conditions for the suppression factor, S, and convective factor, F, in a selected superposition correlation for two different vapour quality ranges. The optimisation can minimise the MAE at 33% and 25% for Case I and Case II, respectively. The proposed method assists in attaining a precise empirical prediction that fits well with the experimental data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.