Abstract
This study deals with the studies of the effect of double flow-control devices (DFCDs) on turbine vane film cooling. Aiming for improving film effectiveness, two semispheroid DFCDs per pitch were attached to the vane surface upstream of the cooling hole. Although the DFCDs were successfully applied to the flat-plate film cooling in the previous study, the applicability to the turbine vane was to be investigated. In order to observe the flow field in detail, Reynolds-averaged Navier–Stokes (RANS) simulation was conducted first. The DFCDs were installed upstream of each cooling hole of the pressure and suction sides of the vane to investigate the effect of the device position. In this paper, the effects of blowing ratio and cooling hole pitch were also investigated. The results obtained by CFD showed that the vortex generated from DFCD suppressed lift-off of the secondary air. As a result, the film effectiveness became significantly higher than that without DFCD condition. Moreover, the improvement in the film effectiveness by DFCD was observed by both of the pressure and suction sides of the turbine vane. Based on the findings through RANS simulation, adiabatic effectiveness and total pressure loss coefficient measurement were performed in a linear cascade test facility. The experiment confirmed that the film effectiveness was improved when DFCDs existed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.