Abstract
There are few studies on how nitrogen (N) fertilizer application rates and transplanting densities impact rice yield, root distribution, and N use efficiency in the cold regions of Northeast China. This research involved a two-year field trial utilizing Jinongda 667 as the material. In 2021, three N split-fertilizer applications—T1 (6:3:1), T2 (5:3:2), T3 (4:3:3)—and two transplanting densities—D1 (30 cm × 13.3 cm) and D2 (30 cm × 20 cm)—were compared with the conventional cultivation mode (T0: 175 kg N hm−2, 6:3:1), whereby the N application mode most suitable for increasing density was explored. In 2022, four N application levels—0 (N0), 125 (N1), 150 (N2), and 175 (N3) kg N hm−2—were assessed under the same density treatment to analyze the yield, resource utilization efficiency, and root traits of Jinongda 667. The results indicated that when the transplanting density was 30 cm × 13.3 cm, the application of 5:3:2 fertilizer was more conducive to improving rice yield. Increasing planting density under reduced N input significantly enhanced both rice yield and N use efficiency. In contrast to the conventional cultivation method (D2N3), the treatment of increased planting density (D1N2) under reduced N input led to a 21.2% rise in the number of panicles per square meter and an 8.6% boost in rice yield. Furthermore, increasing planting density under reduced N input significantly enhanced the agronomic efficiency of N fertilizer, the apparent utilization rate, and the N harvest index. It also boosted the SPAD value, photosynthetic rate, and the utilization efficiency of light and N resources in rice. However, it was noted that root enzyme activity decreased. This study demonstrated that increasing planting density, combined with the N application mode of 5:3:2 and an N application rate of 150 kg hm−2, maximized resource utilization efficiency, optimized root absorption capacity, and resulted in higher yields.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.