Abstract

We have investigated the transmission properties of a photonic crystal waveguide (PCW) formed by holographic lithography for the first time with a two-dimensional (2D) triangular holographic photonic crystal (PhC) including a line defect with two 60 masculine bends. Calculations have shown that for this PCW high transmission (>90%) through sharp corners can be obtained in a wide frequency range from 0.298 to 0.310 (omega alpha/2pi c) with the relative band gap of 4% when the dielectric contrast is 7.6:1. As far as we know, this result should be the widest frequency range with high transmission (>90%) in the waveguide of similar 2D triangular PhCs ever reported. We have also found that the specific holographic designs of PhC have strong influence on the resonance between the two waveguide bends, and thus this fact can be used as an effective means to improve the transmission property of 2D holographic PCW. In addition to the simplicity and low cost of holographic fabrication of PhCs, these features may reveal the possibly better guiding ability of holographic PCW than the conventional waveguide and the promising potential of the former in the application of photonic integrated circuits.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call