Abstract

Amphipathic α-helical peptides have been reported to form discoidal particles or nanodiscs with phospholipids, in which a lipid bilayer patch is encircled by peptides. Peptide-based nanodiscs have broad applicability because of their ease of preparation, size flexibility, and structural plasticity. We previously revealed that the nanodiscs formed by apolipoprotein-A-I-derived peptide 18A showed temperature-dependent structural destabilization above the gel-to-liquid-crystalline phase transition temperature of the lipid bilayer. It has been suggested that this destabilization is due to the migration of peptides bound to the edge of the discs to the bilayer surface. In this study, we designed a peptide that could stabilize nanodisc structures against the phase transition of lipid bilayers by disulfide cross-linking of peptides. An 18A-dimer cross-linked by a proline residue, 37pA (Ac-18A-P-18A-CONH2), also showed thermal destabilization of nanodiscs like 18A. However, cross-linking the sides of the two α-helices of the cysteine-substituted analogue 37pA-C2 with disulfide bonds led to the formation of nanodiscs that were more stable to temperature changes. This stabilizing effect was mainly due to the formation of a cyclic 37pA-C2 monomer by intramolecular disulfide cross-linking. These results suggest that the lateral association of two α-helices, which is the basis of the double-belt structure, is an important factor for the implementation of stable nanodiscs. The results of this study will help in development of more stable nanoparticles with membrane proteins in the future.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call