Abstract

Multiblock poly(carbonate‐co‐esters) (PBC‐PESe) containing poly(butylene carbonates) (PBC) and bio‐based poly(ethylene sebacate) (PESe) had been synthesized successfully by chain‐extension of dihydroxyl terminated PBC (PBC‐OH) and PESe (PESe‐OH) using 1,6‐hexmethylene diisocyanate as chain extender. The chemical structures, molecular weights, crystallization behaviors, and thermal and degradation properties of the copolymers were all characterized by proton nuclear magnetic resonance spectroscopy, Fourier transform infrared spectroscopy, gel permeation chromatography, differential scanning calorimetry, polarized optical microscope, thermogravimetry analysis, water contact angle, and hydrolytic degradation. The resulting copolymers PBC‐PESe all had a sole glass transition temperature (Tg), indicating the two segments, PBC and PESe, were well compatible in the amorphous phase. PESe segment acted a significant role on enhancing the thermal degradation temperature and hydrolytic degradation rate of multiblock copolymers. And the crystallization rate of PBC got dramatically accelerated after PESe segment was incorporated. However, the crystallization mechanism did not change. Furthermore, the mechanical properties of multiblock copolymers could be adjusted by changing the feed composition. Copyright © 2017 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.