Abstract

The thermal stability, in terms of cycle and rate performances at 80 °C, and its safety related to lithium ion batteries composed of a LiFePO4 cathode and SiO anode are investigated. Based on an STEM-EELS analysis, the SiO powder is found to have an amorphous structure, in which nanosized Si particles (Si-rich phase) are uniformly dispersed in the SiO2 matrix (SiO2-rich phase). During the charge/discharge cycling, the cell exhibits a satisfactory cycle performance with a discharge capacity retention of 93.6% and a voltage retention of 93.9% at the 1500th cycle. Also, the charge and discharge capacity retentions at 10 C are 97.5% and 94.7%, respectively, together with a limited polarization, demonstrating its high rate performance. Furthermore, a 1.16 Ah LiFePO4/SiO laminated cell shows negligible voltage and temperature changes during the nail penetration test. The Li concentration in the active material (Si-rich phase) is found to be almost the same as that in the SiO2-rich phase after the test. This high thermal stability and safety may be due to the formed layer from the SiO2 matrix, preventing any side reaction from occurring on the Si surface and isolating the internal current path during the nail penetration.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call