Abstract

A mechatronic inerter can simulate the equivalent mechanical network through the external electrical network and can be used in a wide range of mechanical device design applications. In this paper, we study the use of a mechatronic inerter to enhance vibration isolation in vehicle seat suspensions. Firstly, the vertical and pitch movements of the vehicle’s sprung mass and the vertical vibration of the seat are considered in a half vehicle model. Then, the mechatronic inerter is introduced and the external electrical network is presented. The particle swarm optimization algorithm was used to optimize the seat suspension layout parameters with different transfer function-orders. Numerical simulations under different speeds were performed, and the results show that the application of the used mechatronic inerter’s seat suspension vibration isolation performance outperforms passive suspension. In addition, with an increase in the external electrical network transfer function-order, the seat acceleration and pitch acceleration RMS values will be further reduced. The results of the study will contribute to a new approach to vehicle seat suspension design.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call