Abstract

The possibilities for optimization of doped fine grain graphites with high thermal conductivity and high thermal shock resistance are demonstrated at laboratory scale. A mixture of MCMB powder and different carbides (B 4C, TiC, VC, ZrC and WC) was used as starting material. VC acts as catalyst of the graphitization at the lowest temperature, and ZrC is the most effective catalyst of all investigated carbides. A direct proportionality between the mean crystallite height, L c, and the thermal conductivity at room temperature was found for all materials except for the B 4C- and the ZrC-doped graphites. With increasing graphitization temperature the open porosity of all doped materials becomes gradually closed, suggesting the existence of a diffusion mechanism responsible for both the catalytic effect and the closing of the open porosity. The addition of carbides does not strongly influence the mechanical properties of pure graphite. A high ratio flexural strength to Young’s modulus was achieved.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call