Abstract

AbstractThe crystallization and thermal degradation behaviors of polyhydroxybutyrate (PHB) grafted with maleic anhydride (MA) by different techniques were analyzed with differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and gel permeation chromatography (GPC). The results of DSC, TGA, and GPC analyses indicated that the grafting method could affect the crystallization rate, crystallinity, and thermal stability of PHB because of changes in the molecular weight of PHB and the amount of MA grafted during the reaction. The reduction of the molecular weight of PHB that reacted during the processing followed this order of methods: melt grafting > solvent grafting > mechanical grafting. However, the grafting ratio of MA followed this order of methods: melt grafting > mechanical grafting > solvent grafting. All three grafting methods significantly improved the thermal stability, therefore increasing the crystallization rate and melting temperature of the as‐received PHB. A grafting ratio of MA as low as 0.07 wt % could result in a significant improvement in the heat resistance of PHB. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.