Abstract

A new approach has been used to minimize surface degradation of the LiMn2O4 cathode in lithium-ion batteries by using surface modification. LiMn2O4 particles used as the active material in cathode fabrication were modified by surface adsorption of poly(diallyldimethylammonium chloride) (PDDA). The adsorption and electrochemical performance of the modified cathode material were characterized and compared with that of the untreated LiMn2O4-based cathode. Transmission electron microscopy (TEM), scanning electron microscopy (SEM), and energy-dispersive X-ray analysis (EDAX) confirmed the formation of a thin polymer film on the surface of LiMn2O4 particles. The modified LiMn2O4-based cathode showed improved stability during charge/discharge cycling in an organic electrolyte at room temperature. Further, the measured capacity fading after storage at elevated temperature decreased. Capacity fading measured on cathodes made of PDDA-coated LiMn2O4 powder was lowest for cathodes obtained from powder coated in solut...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.