Abstract

Hypophosphatasia (HPP) results from ALPL gene mutations, which lead to a deficiency of tissue-nonspecific alkaline phosphatase (TNAP), and accumulation of inorganic pyrophosphate, a potent inhibitor of mineralization that is also a natural substrate of TNAP, in the extracellular space. HPP causes mineralization disorders including soft bones (rickets or osteomalacia) and defects in teeth and periodontal tissues. Enzyme replacement therapy using mineral-targeting recombinant TNAP has proven effective in preventing skeletal and dental defects in TNAP knockout (Alpl−/−) mice, a model for life-threatening HPP. Here, we show that the administration of a soluble, intestinal-like chimeric alkaline phosphatase (ChimAP) improves the manifestations of HPP in Alpl−/− mice. Mice received daily subcutaneous injections of ChimAP at doses of 1, 8 or 16mg/kg, from birth for up to 53days. Lifespan and body weight of Alpl−/− mice were normalized, and vitamin B6-associated seizures were absent with 16mg/kg/day of ChimAP. Radiographs, μCT and histological analyses documented improved mineralization in cortical and trabecular bone and secondary ossification centers in long bones of ChimAP16-treated mice. There was no evidence of craniosynostosis in the ChimAP16-treated mice and we did not detect ectopic calcification by radiography and histology in the aortas, stomachs, kidneys or lungs in any of the treatment groups. Molar tooth development and function improved with the highest ChimAP dose, including enamel, dentin, and tooth morphology. Cementum remained deficient and alveolar bone mineralization was reduced compared to controls, though ChimAP-treated Alpl−/− mice featured periodontal attachment and retained teeth. This study provides the first evidence for the pharmacological efficacy of ChimAP for use in the treatment of skeletal and dental manifestations of HPP.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.