Abstract

The use of nanotechnology in the field of acidizing, particularly in fracturing fluids, has garnered significant attention over the past decade. Viscoelastic surfactants (VESs) are utilized as one of the most effective fracturing fluids, possessing both elasticity and viscosity properties. These fluids are crucial additives in acidizing packages, enhancing their performance. However, various factors, such as salinity, temperature, pressure, and concentration, can sometimes weaken the efficacy of these fluids. To address this, the integration of nanoparticles has been explored to improve fluid retention in reservoirs and enhance the efficiency. This study focuses on investigating the impact of the main metallic-type nanoparticles on the rheological behavior of VES fluids. Iron oxide, magnesium oxide, and zinc oxide nanoparticles were utilized, and the microscopic-scale rheological behavior of the fluids was thoroughly evaluated. The highest performance for enhancing fluid gelation, stability, and rheological characteristics of VES fluids was found for Fe2O3 nanoparticles at an optimum concentration of 500 ppm. At this concentration and shear rate of 100 s-1, the viscosity of the fluid reached 169.61 cP. For iron oxide nanoparticles at a concentration of 500 ppm, by increasing the temperature from 25 to 85 °C, the gelation state of the fluid increased from 7 h and 50 min to 17 h and 45 min. This improvement is attributed to their high surface area and the increased density of entanglement points within the micelles, leading to a more interconnected structure with enhanced viscoelastic properties. Furthermore, iron oxide nanoparticles significantly enhance gelation by physically connecting the micelles, thereby improving stability and structure. The absorption of surfactant molecules by the nanoparticles additionally contributes to micelle reconstruction and shape alteration. The presence of iron oxide nanoparticles helps maintain the gel structure even at elevated temperatures, preventing rapid viscosity decrease. Our findings may provide new insights for development of high-performance, economical, and environment-friendly fracturing fluids used in well stimulation operations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call