Abstract
In organic photovoltaic (OPV) cells, the nanoscale morphology of the organic layer is an essential parameter governing their charge-transport properties. Optimization of the vertical composition gradient in the poly(3-hexylthiophene) (P3HT) active layer in an OPV cell with an enhanced efficiency was achieved by using different sonication times of 10, 15, 20, 25, and 30min. Atomic force microscopy images confirmed that the sonication process increased the roughness of the P3HT layer in a vertically modulated nanoscale morphology. Photoluminescence spectra exhibited a strong peak corresponding to the P3HT particles. The power conversion efficiency of the OPV cells with a vertically modulated P3HT nanostructural layer sonicated at 15min was enhanced by 1.04% due to an increase in the interfacial region between the acceptor and the donor materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.