Abstract

High piezoelectric composite films composed of poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) and ferromagnetic cobalt ferrite (CoFe2O4) (0.00 ​wt% to 0.2 ​wt%) are prepared by a solution casting method accompanied by uniaxial stretching and high electric field poling. The decisive effect of the poling electric field on the power generating capability was confirmed by the experiments. For pure PVDF-HFP films, when the maximum electric field Emax is 120 ​MV/m, the calibrated open circuit voltage reaches 2.93 ​V, which is much higher than those poled at lower electric fields (70 ​MV/m: 1.41 ​V; 90 ​MV/m: 2.11 ​V). Furthermore, the addition of CoFe2O4 also influences the piezoelectricity dramatically. In the samples containing 0.15 ​wt% CoFe2O4, the calibrated open circuit voltage increases to the maximum value of 3.57 ​V. Meanwhile, the relative fraction of the β-phase and the crystallinity degree are 99% and 48%, respectively. The effects of CoFe2O4 nanoparticles on initial crystallization, uniaxial stretching and high electric field poling are investigated by XRD, FTIR and DSC.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.