Abstract

Abstract The ocean mixed layer model (OMLM) is improved using the large-eddy simulation (LES) and the inverse estimation method. A comparison of OMLM (Noh model) and LES results reveals that underestimation of the turbulent kinetic energy (TKE) flux in the OMLM causes a negative bias of the mixed layer depth (MLD) during convection, when the wind stress is weak or the latitude is high. It is further found that the entrainment layer thickness is underestimated. The effects of alternative approaches of parameterizations in the OMLM, such as nonlocal mixing, length scales, Prandtl number, and TKE flux, are examined with an aim to reduce the bias. Simultaneous optimizations of empirical constants in the various versions of Noh model with different parameterization options are then carried out via an iterative Green’s function approach with LES data as constraining data. An improved OMLM is obtained, which reflects various new features, including the enhanced TKE flux, and the new model is found to improve the performance in all cases, namely, wind-mixing, surface heating, and surface cooling cases. The effect of the OMLM grid resolution on the optimal empirical constants is also investigated. Significance Statement This work illustrates a novel approach to improve the parameterization of vertical mixing in the upper ocean, which plays an important role in climate and ocean models. The approach utilizes the data from realistic turbulence simulation, called large-eddy simulation, as proxy observation data for upper ocean turbulence to analyze the parameterization, and the statistical method, called inverse estimation, to obtain the optimized empirical constants used in the parameterization. The same approach can be applied to improve other turbulence parameterization, and the new vertical mixing parameterization can be applied to improve climate and ocean models.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call