Abstract

We have compared the effect of the genetic background of recipient oocytes on the in vitro and in vivo development of nuclear transfer reconstructed embryos in goats. Adult fibroblast cells from Boer goats were used as donor cells, and recipient oocytes were obtained from Boer goats and Boer cross-breeds (Boer♂×Huanghuai♀). Nuclear transfer reconstructed embryos were cultured in vitro, or transferred into recipient goats. The mitochondrial origin of 2 cloned Boer goats was investigated by analysing the D-loop region based on polymorphisms via DNA sequencing. There was no significant difference in the fusion rate and cleavage rate of reconstructed embryos (P>0.05), when using Boer and cross-breeding goat oocytes as recipient cytoplast respectively. However, in vitro morula development of reconstructed embryos from Boer oocytes was significantly higher than that of cross-breeding embryos (34.1% versus 19.1%, P<0.05). There was no significant difference in the rate of pregnancy and foetus loss between the 2 breeds. However, the live-birth rate was significantly higher with Boer goat oocyte recipients than the cross-breeds (3.1% versus 0.8%, P<0.05). Mitochondrial analysis showed that the 2 cloned goats were similar to their respective oocyte donor goats, and significantly different from the nucleus donor. In conclusion, genetic background of recipient oocytes affected in vitro and in vivo development of reconstructed embryos, with the homologous background of cytoplast and nuclear donor benefiting development of reconstructed embryos. The mitochondrial origin of the 2 cloned Boer goats came from recipient oocytes, not donors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call