Abstract
In order to obtain competitive strontium ferrite sintered magnets, SiO2 and CaO are added to avoid exaggerated grain growth. Besides favoring proper densification, these additives prevent the collapse of coercivity associated to grain growth. However, these additives may lead to slight decreases in density and the formation of paramagnetic α-Fe2O3 that hampers magnetization. Here, with the motivation of simplifying the production process, we present a study to maximize the magnetic performance of strontium ferrite ceramics using silica as the sole additive. A microscopic study offers insights into the grain growth mechanism activated by Silica. As a result, a compromise between relative density, coercivity and saturation magnetization is attained. It is found that sintering for 4 h up to 1200 °C with a SiO2 content of 1 wt% leads to the best compromise between coercivity, magnetization and density values. Competitive densities are reported in the absence of CaO, the usual co-additive. In addition, Confocal Raman Microscopy is employed for the first time to characterize the decomposition of strontium ferrite onto α-Fe2O3.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.