Abstract

The negative refraction and imaging effects in photonic crystals can be used to solve diffraction limit problem in near-field optics. Improving transmission efficiency and image resolution is a critical work for negative refraction imaging. We theoretically investigate the band structures, equi-frequency surfaces, electromagnetic wave propagation, and the image intensity distributions in a two-dimensional hexagonal photonic crystal consisting of hollow components. It is found that, in contrast to a hexagonal photonic crystal consisting of solid dielectric cylinders of the same radius, photonic crystals with hollow components can be used to optimize the all-angle negative refraction. Numerical simulations show that the transmission efficiency and resolution of image can be enhanced by changing the radii of the hollow air rods.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call