Abstract

In the present study, the artificial neural networks (ANNs) technique was implemented to link non-dimensional pressure coefficients and flow characteristics to calibrate a five-hole probe. The experimental data of this work were obtained from a subsonic open-circuit wind tunnel at the velocity of 10 m/s. Here, the efficiency of ANNs was compared with two conventional data reduction methods, including linear interpolation technique and 5th-order polynomial surface fit algorithm. Based on the statistical parameters of calibration data, it was concluded that the radial basis function (RBF) algorithm was more accurate and had more flexibility compared to the multi-layer perceptron (MLP) regression algorithm, the linear interpolation and 5th-order polynomial methods. In the RBF method, the mean absolute errors of 0.11, 0.64, 0.02 and 0.03 were achieved for α, β, Cpt and Cps , respectively. Furthermore, the effects of training data reduction and data selection on the performance of RBF were studied. The accuracy of the proposed RBF method was analyzed at different α angles and for random test data. Finally, the influence of increasing number of test data on the efficiency of calculated RBF method was evaluated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.