Abstract

In order to improve the energy efficiency in the dilute trichloroethylene (TCE) removal by the nonthermal plasma process, the barrier discharge reactor was studied experimentally. It is investigated by combining it with catalyst of manganese dioxide at the downstream of the barrier discharge reactor. Decomposition efficiency by the barrier discharge reactor was about 83% at the gas flow rate 2 L/min, where the dilute TCE concentration is 250 ppm. Decomposition efficiency with passing through manganese dioxide was improved about 99% at the specific energy of 40 J/L. However, other by-products including ozone and oxidation by-products such as DCAC and TCAA were detected by the gas chromatograph mass spectrometry or the Fourier transform infrared spectroscope measurement. DCAC is generated at the plasma reactor, but TCAA is generated at catalyst during ozone decomposition. CO/sub x/ yield increased about twice with passing through catalyst in the Direct Process. Nitric oxides such as NO, NO/sub 2/, and N/sub 2/O did not generate so much in this barrier discharge process. The dielectric barrier discharge process combined with manganese dioxide is considered as a very desirable way to improve the energy efficiency.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call