Abstract

This article presents a restoration approach for improving the resilience of electric distribution systems (EDSs) by taking advantage of several operational resources. In the proposed approach, the restoration process combines dynamic network reconfiguration, islanding operation of dispatchable distributed generation units, and the prepositioning and displacement of mobile emergency generation (MEG) units. The benefit of exploring a demand response (DR) program to improve the recoverability of the system is also taken into account. The proposed approach aims to separate the in-service and out-of-service parts of the system while maintaining the radiality of the grid. To assist the distribution system planner, the problem is formulated as a stochastic-scenario-based mixed-integer linear programming model, where uncertainties associated with PV-based generation and demand are captured. The objective function of the problem minimizes the amount of energy load shedding after a fault event as well as PV-based generating curtailment. To validate the proposed approach, adapted 33-bus and 83-bus EDSs are analyzed under different test conditions. Numerical results demonstrate the benefits of coordinating the dynamic network reconfiguration, the prepositioning and displacement of MEG units, and a DR program to improve the restoration process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.