Abstract

Several critical heat flux (CHF) correlations including the look-up table in the MARS code have been assessed for the prediction of CHF in a downward-flow narrow rectangular channel. For the assessment, we built an experiment database that covers pressures between 1.01 and 39.0 bar, gap sizes between 1.09 and 6.53 mm, mass fluxes up to 25,772 kg/m2s, and under one-sided and two-sided heating conditions. The results of the assessment showed that the Kaminaga correlation has the best overall prediction compared to others. However, because the correlation uses global variables, such as inlet and outlet subcooling and total heat transfer area, it is difficult to use in a system code. A new CHF correlation is then proposed by replacing the global variables in the Kaminaga correlation with local ones and adding correction factors to consider the effect of gap size, mass flux, and the number of heating walls. Additional correction factor is added to consider the effect of inlet subcooling. It is shown that the new one is better than the Kaminaga correlation and it is easy to implement to any system code.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.