Abstract

The steel rolling process employs a coiling-uncoiling process in which a steel sheet is wound and unwound in a coil shape using a coiler to efficiently produce a long steel sheet with a constant thickness. As front and rear tension is required when the steel sheet enters and exits the rolling mill, the coiler introduces tension in the steel sheet through the control of the rotational speed. As the coil is produced, coiling tension accumulates, and pressure is applied to the inside of the coil. Finite element analysis and stress calculation analysis were derived from previous studies to prevent such pressure increases in the sleeves and coils. However, the radial and circumferential stresses at arbitrary positions inside the coil cannot be accurately determined by considering without the stresses’ difference in the thickness direction based on the assumption that the coil’s thickness is thin. In this study, an analytical model that can accurately calculate the sleeve and coil stress during elastic deformation was established by improving the internal circumferential stress generated when the steel sheet is bent into a coil and the radial stress equation associated with the beam bending theory. In addition, by comparing the finite element analysis model results reflecting the same coiling condition, this model’s validity was verified by confirming the consistency of the results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.