Abstract
We present the experimental results of an optimal recycling method for waste carbon fibre reinforced plastics (CFRPs) that is based on the application of a set of unit mechanochemical processes. The objectives of this study were to highlight the influence of process factors that are inherent in the chemical recycling process of waste CFRP. We investigated the influence of the soaking period, the application of a catalyst and impurities on the recycling process and recovery efficiency of the waste CFRP. Different combinations of the unit mechanochemical processes were investigated, and the effectiveness of the combination was analysed. The chemical recycling process was conducted using benzyl alcohol under ordinary pressure at initial solvent temperatures lower/equivalent to its flash point temperature. Experimental results showed that the solvent temperature increased up to boiling temperature levels when the mechanochemical process was initiated, thereby enhancing the mechanochemical process. The presence of impurities did not influence the recovery rate. Likewise, this experimental study highlighted the importance of accounting for the soaking period during the chemical recycling process: an extended soaking period resulted in a higher recovery rate, a lower portion of undissolved solids and recovered fibres of better quality. This research highlighted the significance of choosing the proper combination for the chemical recycling process as well as the benefits of recycling the waste CFRP with negligible application of the catalyst.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Waste Management & Research: The Journal for a Sustainable Circular Economy
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.