Abstract

In this paper, an optical code division multiple access (OCDMA) system was analysed to improve the bit error rate (BER) performance at 10 Gbps. The improvements to this system were based on a modified double weight code and a NAND subtraction technique and aimed to support the large number of active users in the fibre-to-the-home network. The system performance was investigated through extensive theoretical and numerical simulation analyses. The theoretical and simulation results revealed that the new detection technique exhibits improved BER performance compared to conventional techniques, such as complimentary subtraction techniques. The system performance was characterised by the signal-to-noise ratio, the bit error rate (BER), and various transmit powers (\(P_{sr} - 10\) dBm). The results show that the proposed system, which is based on a new detection technique, can achieve the optimal BER with a high number of users and maintains the error floor transmission rate \((\le 10^{-9})\).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.