Abstract

The 3HS.3BL spontaneous Robertsonian translocation obtained from the progenies of wheat-barley (Chinese Spring × Betzes) hybrids backcrossed with wheat line Mv9kr1 was transferred into the modern Martonvásár wheat cultivar Mv Bodri. The translocation was identified with molecular cytogenetic methods. The inheritance of the translocation was traced using genomic in situ hybridization. Fluorescence in situ hybridization using barley subtelomeric (HvT01) and centromere-specific [(AGGGAG)4] repetitive DNA probes confirmed that the complete barley chromosome arm was involved in the Robertsonian translocation. The wheat-specific repetitive DNA probes identified the presence of the whole wheat genome, except the short arm of the 3B chromosome. Genotypes homozygous for the centric fusion were selected, after which morphological analysis was performed on the plants and the yield components were measured in the field during two consecutive vegetative seasons. The introgression of the 3HS.3BL translocation into the modern wheat cultivar Mv Bodri significantly reduced the plant height due to the incorporation of the dwarfing allele RhtD1b. The presence of the 3HS.3BL translocation in the Mv9kr1 and Mv Bodri wheat background improved tillering and seeds per plant productivity in field experiments carried out in Martonvásár and Keszthely, Hungary.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.