Abstract
Stabilization of a synchronous generator through control of firing angle of the power converters in superconducting magnetic energy storage (SMES) systems is considered. An optimum strategy of the firing angle control is designed so as to eliminate the transients in minimum time. A nonlinear model of a synchronous generator, its governor and exciter systems, and an SMES system connected to the generator terminal is considered. The optimum firing angle control is derived retaining the nonlinearities of the system dynamics. Digital simulation results indicate that the proposed strategy controls the slowly growing as well as first swing instabilities very effectively.< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">></ETX>
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.