Abstract

Superplasticity in fine-grained oxide ceramics has been generally elucidated on the basis of their experimental strain rate-flow stress relationship and phenomenological analysis of cavity nucleation and growth. It has been widely accepted that the high temperature superplastic flow and failure in ceramics is significantly influenced by the atomic structure and chemistry of grain boundaries. Such phenomenon cannot be explained based on the classical phenomenological analysis. Our research group has therefore proposed to establish a new research field, grain boundary plasticity, to describe the superplastic deformation related to the grain boundary atomic structure. This paper aims to point out the importance of the atomistic analysis of grain boundary to develop new superplastic ceramics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.