Abstract

Various robotic problems (e.g., map exploration, environmental monitoring and spatial search) can be formulated as submodular maximization problems with routing constraints. These problems involve two NP-hard problems, maximal coverage and traveling salesman problems. The generalized cost-benefit algorithm (GCB) is able to solve this problem with a <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$\frac{1}{2}(1-\frac{1}{e})\widetilde{OPT}$</tex-math></inline-formula> guarantee, where <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$\widetilde{OPT}$</tex-math></inline-formula> is the approximation of optimal performance. There is a gap between the <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$\widetilde{OPT}$</tex-math></inline-formula> and the optimal solution <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$(OPT)$</tex-math></inline-formula> . In this research, the proposed algorithms, Tree-Structured Fourier Supports Set (TS-FSS), utilize the submodularity and sparsity of routing trees to boost GCB performance. The theorems show that the proposed algorithms have a higher optimum bound than GCB. The experiments demonstrate that the proposed approach outperforms benchmark approaches.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call