Abstract
There is a growing interest in the offering of novel alternative choices to users of recommender systems. These recommendations should match the target query while at the same time they should be diverse with each other in order to provide useful alternatives to the user, i.e., novel recommendations. In this paper, the problem of extracting novel recommendations, under the similarity–diversity trade-off, is modeled as a facility location problem. The results from tests in the benchmark Travel Case Base were satisfactory when compared to well-known recommender techniques, in terms of both similarity and diversity. It is shown that the proposed method is flexible enough, since a parameter of the adopted facility location model constitutes a regulator for the trade-off between similarity and diversity. Also, our work can broaden the perspectives of the interaction and combination of different scientific fields in order to achieve the best possible results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.