Abstract

In the previous experiment, we isolated and characterized glyceraldehyde-3-phosphate dehydrogenase (GPD) gene of the oyster mushroom, Pleurotus sajor-caju. Expression levels of the GPD gene in the mycelia of P sajor-caju was significantly increased by exposing the mycelia to abiotic stresses, such as salt, cold, heat, and drought. We also showed that GPD confers abiotic stress resistance when introduced into yeast cells. The survival rate of the transgenic yeast cell that harbored the GPD gene was significantly higher when the yeast cells were subjected to salt, cold, heat, and drought stresses, compared with the yeast that was transformed with the pYES2 vector alone. In order to investigate the functional role of the P. sajor-caju GPD gene in higher plant cells, the complete P. sajor-caju GPD cDNA was fused into the CaMV35S promoter and then introduced into potato plants. Putative potato transformants were screened by using PCR. Twenty-one transformants were further analyzed with RT-PCR to confirm the expression of P. sajor-caju GPD. A RT-PCR Southern blot analysis revealed that 12 transgenics induced the P. sajor-caju GPD gene expression. A bioassay of these transformants revealed that the P. sajor-caju GPD gene was enough to confer salt stress resistance in the potato plant cell system. Results showed that P. sajor-caju GPD, which was continuously expressed in transgenic potato plants under normal growing conditions, resulted in improved tolerance against salt loading.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.