Abstract

This study proposes a method for estimating the positions of vehicles in urban environments with high accuracy. We employ satellite positioning by GNSS for position estimation. Real-time kinematic-global navigation satellite systems (RTK-GNSS) with high precision in satellite positioning can estimate positions with centimeter-scale accuracy. However, in urban areas, the position estimation performance deteriorates owing to multipath errors. Therefore, we propose a method to improve the positioning results by increasing the robustness against multipath using vehicle trajectory. The vehicle trajectory estimates the travel route using the attitude angle and speed. Attitude angles are heading, pitching and slip angle. Trajectories can be generated with 0.5m error performance per 100m. In the proposed method, the trajectory is used as a constraint to solve the multipath of RTK-GNSS. In the evaluation test, the ratio of high-accuracy position estimation improved by up to approximately 30% compared to the conventional method. It is assumed that this method can enhance the development of self-driving cars, AGV control and SLAM technology by eliminating errors and calculating reliability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.