Abstract
Roller bearings are one of the most commonly used components in rotational machines. The fault diagnosis of roller bearings thus plays an important role in ensuring the safe functioning of the mechanical systems. However, in most cases of bearing fault diagnosis, there are limited number of labeled data to achieve a proper fault diagnosis. Therefore, exploiting unlabeled data plus few labeled data, this paper proposed a roller bearing fault diagnosis method based on tritraining to improve roller bearing diagnosis performance. To overcome the noise brought by wrong labeling into the classifiers training process, the cut edge weight confidence is introduced into the diagnosis framework. Besides a small trick called suspect principle is adopted to avoid overfitting problem. The proposed method is validated in two independent roller bearing fault experiment vibrational signals that both include three types of faults: inner-ring fault, outer-ring fault, and rolling element fault. The results demonstrate the desirable diagnostic performance improvement by the proposed method in the extreme situation where there is only limited number of labeled data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.