Abstract

There is substantial evidence that increased cellular calcium may activate processes that lead to cellular injury and death, and calcium entry blockers (CEB) have been shown to protect against renal ischemic injury. This approach has been used experimentally to enhance kidney preservation during both warm and cold ischemia. In the present study, the effect of the CEB verapamil on kidney function after 24 hr of hypothermic (4-7 degrees C) perfusion was examined and compared with simple cold storage with Eurocollins' solution (4 hr), 4 or 24 hr cold perfusion, without the addition of verapamil. The cold perfusion media consisted of 3% albumin in phosphate-free Krebs-Henseleit saline supplemented with 5 mM glucose. Cold perfusion was performed at 40 mmHg perfusion pressure with either 0 (C) or 5 microM verapamil (V) added to the cold perfusion media. Renal functional parameters of plasma flow (RPF), inulin clearance (Cin), fractional (FRNa+) and net sodium reabsorption (TNa+) were assessed during 60 min of reperfusion at 37 degrees C using 6.7% albumin in Krebs-Henseleit saline supplemented with glucose, inulin, and 20 amino acids. There was no increase in RPF with V (33 +/- 1 vs. 32 +/- 2 ml/min/g,NS) but Cin was significantly higher (271 +/- 30 vs. 168 +/- 20 microliter/min/g P less than 0.01) with V. Preservation of tubular function by V was demonstrated by an increase in FRNa+ (84 +/- 5 vs. 57 +/- 8%, P less than .01), TNa+ (32 +/- 6 vs. 15 +/- 3 mumol/min/g, P less than .01) and renal adenosine triphosphate (ATP) concentration (8.0 +/- 5 vs. 4.7 +/- 1.0 mumol/g dry tissue, P less than .01). Thus, V appears not only to enhance kidney preservation with warm and cold ischemia but also improves renal function, as assessed by glomerular filtration rate (GFR) tubular function, and tissue ATP concentration with 24-hr cold perfusion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.