Abstract
This paper proposes a novel adaptive nonlinear observer design for a voltage source converter based on high-voltage direct current (VSC-HVDC) transmission systems. We consider a system consisting of a power grid, and a converter station connected to an unknown load through a long HVDC cable. The primary contribution of this work is the development of a global high-gain observer that facilitates the estimation of all system states. Specifically, it encompasses the estimation of power grid parameters, such as the angular frequency and the voltage at the point of common coupling (PCC), as well as the states of the HVDC cable and the current absorbed by the load. The performance of the proposed observer is assessed through theoretical analysis and simulations. Additionally, we implemented our observer on a digital signal processor (DSP) eZdsp in a processor-in-the-loop (PIL) quasi-real-time setting. Experimental results, coupled with numerical simulations, showcase the outstanding performance of our proposed observer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.