Abstract

The errors in radar quantitative precipitation estimations consist not only of systematic biases caused by random noises but also spatially nonuniform biases in radar rainfall at individual rain-gauge stations. In this study, a real-time adjustment to the radar reflectivity-rainfall rates (Z-R) relationship scheme and the gauge-corrected, radar-based, estimation scheme with inverse distance weighting interpolation was developed. Based on the characteristics of the two schemes, the two-step correction technique of radar quantitative precipitation estimation is proposed. To minimize the errors between radar quantitative precipitation estimations and rain gauge observations, a real-time adjustment to the Z-R relationship scheme is used to remove systematic bias on the time-domain. The gauge-corrected, radar-based, estimation scheme is then used to eliminate non-uniform errors in space. Based on radar data and rain gauge observations near the Huaihe River, the two-step correction technique was evaluated using two heavy-precipitation events. The results show that the proposed scheme improved not only in the underestimation of rainfall but also reduced the root-mean-square error and the mean relative error of radar-rain gauge pairs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.