Abstract
An experimental setup has been designed and realized in order to optimize the characteristics of laser-induced breakdown spectroscopy system working in various pressure environments. An approach combined the normalization methods with the partial least squares (PLS) method are developed for quantitative analysis of molybdenum (Mo) element in the multi-component alloy, which is the first wall material in the Experimental Advanced Superconducting Tokamak. In this study, the different spectral normalization methods (total spectral area normalization, background normalization, and reference line normalization) are investigated for reducing the uncertainty and improving the accuracy of spectral measurement. The results indicates that the approach of PLS based on inter-element interference is significantly better than the conventional PLS methods as well as the univariate linear methods in the various pressure for molybdenum element analysis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.