Abstract

Machine design and electrical contacts involve frequently elastic circular contacts subjected to normal loads. Depending on geometry, these may be Hertzian or surface contacts. Both possess highly nonuniform pressure distributions which diminish contact load carrying capacity. The achievement of a uniform pressure distribution would be ideal to improve the situation, but this violates stress continuity. Instead, the generation of a uniform pressure over most of contact area can be sought. Generally, equivalent punch profile which generates this pressure is found by numerical evaluation of double integrals. This paper simplifies the derivation of punch profile by using an existing correspondence between a polynomial punch surface and elastically generated pressure. First, an improved pressure profile is proposed seeking to avoid high Huber-Mises-Hencky stresses near contact surface. Then, this is approximated by the product between typical Hertz square root and an even polynomial, which yields directly the punch profile. Formulas for normal approach and central pressure are derived.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.