Abstract

PurposeThe purpose of this study was to predict and classify the gamma passing rate (GPR) value by using new features (3D dosiomics features and combined with plan and dosiomics features) together with a machine learning technique for volumetric modulated arc therapy (VMAT) treatment plans. Methods and materialsA total of 888 patients who underwent VMAT were enrolled comprising 1255 treatment plans. Further, 24 plan complexity features and 851 dosiomics features were extracted from the treatment plans. The dataset was randomly split into a training/validation (80%) and test (20%) dataset. The three models for prediction and classification using XGBoost were as follows: (i) plan complexity features-based prediction method (plan model); (ii) 3D dosiomics feature-based prediction model (dosiomics model); (iii) a combination of both the previous models (hybrid model). The prediction performance was evaluated by calculating the mean absolute error (MAE) and the correlation coefficient (CC) between the predicted and measured GPRs. The classification performance was evaluated by calculating the area under curve (AUC) and sensitivity. ResultsMAE and CC at γ2%/2 mm in the test dataset were 4.6% and 0.58, 4.3% and 0.61, and 4.2% and 0.63 for the plan model, dosiomics model, and hybrid model, respectively. AUC and sensitivity at γ2%/2 mm in test dataset were 0.73 and 0.70, 0.81 and 0.90, and 0.83 and 0.90 for the plan model, dosiomics model, and hybrid model, respectively. ConclusionsA combination of both plan and dosiomics features with machine learning technique can improve the prediction and classification performance for GPR.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.