Abstract

This paper presents an improvement in power flow calculation based on current injection method by introducing optimization factor. In the method proposed by this paper, the PQ buses are represented by current mismatches while the PV buses are represented by power mismatches. It is different from the representations in conventional current injection power flow equations. By using the combined power and current injection mismatches method, the number of the equations required can be decreased to only one for each PV bus. The optimization factor is used to improve the iteration process and to ensure the effectiveness of the improved method proposed when the system is ill-conditioned. To verify the effectiveness of the method, the IEEE test systems are tested by conventional current injection method and the improved method proposed separately. Then the results are compared. The comparisons show that the optimization factor improves the convergence character effectively, especially that when the system is at high loading level andR/Xratio, the iteration number is one or two times less than the conventional current injection method. When the overloading condition of the system is serious, the iteration number in this paper appears 4 times less than the conventional current injection method.

Highlights

  • Power flow studies are necessary for planning, operating, economic scheduling, and other analysis, such as transient stability, voltage stability, and contingency studies

  • This paper has presented improvement in power flow calculation based on current injection method by introducing an optimization factor

  • Unlike other current injection methods, the PV buses are represented by power mismatches here

Read more

Summary

Introduction

Power flow studies are necessary for planning, operating, economic scheduling, and other analysis, such as transient stability, voltage stability, and contingency studies. The tasks of power flow calculation are to solve the steady-state operating conditions of power systems based on the operation modes and the wiring of the systems. To improve the convergence characteristic of Gauss-Seidel method, the Newton-Raphson method was introduced. The NR method was once considered the state of the art power-flow technique and widely accepted in industry applications. The main disadvantage of the Newton-Raphson method is the necessity for factorizing and updating the Jacobian matrix during the iterative solution process [4]. To solve this problem, Fast Decoupled power flow method was proposed to speed up the iteration process of the NR method and decrease the required minimum memory storage. Some other methods have been presented in other forms, such as the use of sequence component frame [9,10,11] and the method based on the loop frame of reference [12]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call