Abstract

Low surface energy and poor adhesion are well-known characteristics of polypropylene (PP). Surface treatments such as plasma, corona, and laser are usually applied to overcome these limitations. However, current studies highlight the incorporation of hydrophilic or amphiphilic polymers into hydrophobic low-surface-energy polymers as an alternative for increasing surface energy and thus improving adhesion. Lignin could be a promising amphiphilic polymer for use in increasing surface energy. In this work, PP/kraft lignin composites were obtained by incorporating up to 5 wt% of kraft lignin (KL) into a PP matrix. Corona treatment was applied to pristine PP and composites surfaces. Contact angle measurements and peeling tests were carried out to investigate the effects of KL incorporation and corona treatment on the surface energy and the mechanical strength of adhesion. Differential scanning calorimetry (DSC) was used to evaluate the PP’s crystallinity index and recrystallization temperature and to dismiss their effects on the surface energy changes. Scanning electron microscopy (SEM) was applied to investigate the lignin dispersion. The results show that KL incorporation has potential as a method to improve the surface energy of PP, improve its poor adhesion, and enhance the effects of corona treatment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.