Abstract

Hyperspectral imaging technology is developing in a very fast way. We find it today in many analytical developments using different spectroscopies for sample classification purposes. Instrumental developments allow us to acquire more and more data in shorter and shorter periods of time while improving their quality. Therefore, we are going in the right direction as far as the measure is concerned. On the other hand, we can make a more mixed assessment for the hyperspectral imaging data processing. Indeed, the data acquired in spectroscopic imaging have the particularity of encoding both spectral and spatial information. Unfortunately, in chemometrics, almost all classification approaches today only use spectral information from three-dimensional hyperspectral data arrays. To be more precise, an approach encompassing the unfolding/refolding of such arrays is often applied beforehand because the majority of algorithms for analysing these data are not capable of handling them in their original structure. Spatial information is therefore lost during the chemometric exploration. The study of the spectral part of the acquired data array alone is clearly a limitation that we propose to overcome in this work. 2-D Stationary Wavelet Transform will be used in the data preprocessing phase to ensure the joint use of spectral and spatial information. Two spectroscopic datasets will then be used to evaluate the potential of our approach in the context of supervised classification.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.