Abstract
The goal of this work is to improve phone recognition accuracy using combination of source and system features. As speech is produced by exciting time varying vocal tract system with time varying excitation, we want to explore both source and system components of speech production system for phone recognition. The excitation source information is derived by processing linear prediction residual of speech signal. Mel-frequency cepstral coefficient features are used for capturing vocal tract information. The Phone Recognition Systems (PRSs) are developed using hidden markov models. The proposed PRSs are developed for English and an Indian language Bengali using TEVIIT and Phonetic, Prosodically Rich Transcribed speech corpora, respectively. We have also developed tandem PRSs using the phone posteriors obtained from feedforward neural networks. The tandem PRSs developed using combination of excitation source and system features, outperform the conventional tandem systems developed using system features alone.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.