Abstract

Grape (Vitis vinifera cv. Pok Dum) is a rich source of health relevant phenolic antioxidants and can be targeted to mitigate chronic oxidative stress commonly associated with noncommunicable chronic diseases (NCDs), such as cancer. Furthermore, improving health relevant phenolic bioactives and associated antioxidant properties of fruits by using chemical elicitation strategy has significant merit. Based on this biochemical rationale, chitosan and other chemical elicitors potassium dihydrogen phosphate (KH2PO4), potassium nitrate (KNO3), sodium selenite (Na2SeO3), and aluminum sulphate [Al2(SO4)3] were targeted to improve phenolic bioactive profiles and associated antioxidant and anticancer properties of cultured grape cells grown for 28 days. After chemical elicitor treatments, phenolic content, resveratrol content, antioxidant activity, phenylalanine ammonia-lyase (PAL) enzyme activity, and cytotoxicity (cell inhibition) against cancer cell lines of cultured grape cells were investigated using in vitro assay models. Overall, stimulation of phenolic bioactives and improvement in associated cytotoxicity against cancer cell lines were found in cultured grape cells after chemical elicitation treatments. Chitosan and other chemical elicitors resulted in lower growth of cultured grape cells; however, they enhanced phenolic biosynthesis on a cell weight basis when compared with the control. Chemical elicitor treatments, such as Na2SeO3 (50 mg·L−1 and 100 mg·L−1) and Al2(SO4)3 (50 mg·L−1), resulted in enhanced phenolic content at the end of 14 days of culture (1.7, 1.4, and 1.0-fold increase, respectively). Higher accumulation of resveratrol and higher antioxidant activity with Al2(SO4)3 (50 mg·L−1) and Na2SeO3 (100 mg·L−1) elicitation treatments were also observed. Enhanced phenolic bioactives in cultured grape cells in response to chemical elicitation treatment, such as Na2SeO3, also resulted in higher cytotoxicity against different cancer cell lines. Therefore, this study indicates that chemical elicitors, such as Na2SeO3 and Al2(SO4)3, as well as chitosan in select doses can be targeted to improve phenolic bioactives and associated antioxidant and anticancer properties in cultured grape cells and such strategy has relevance for wider applications with other phenolic antioxidant-enriched fruits.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.