Abstract
Evidence indicates that low-level laser therapy (LLLT) minimizes fatigue effects on muscle performance. However, the ideal LLLT dosage to improve athletes'performance during sports activities such as cycling is still unclear. Therefore, the goal of this study was to investigate the effects of different LLLT dosages on cyclists'performance in time-to-exhaustion tests. In addition, the effects of LLLT on the frequency content of the EMG signals to assess fatigue mechanisms were examined. Twenty male competitive cyclists participated in a crossover, randomized, double-blind, placebo-controlled trial. They performed an incremental cycling test to exhaustion (on day 1) followed by 4 time-to-exhaustion tests (on days 2-5) at their individual maximal power output. Before each time-to-exhaustion test, different dosages of LLLT (135, 270, and 405 J/thigh, respectively) or placebo were applied at the quadriceps muscle bilaterally. Power output and muscle activation from both lower limbs were recorded throughout the tests. Increased performance in time-to-exhaustion tests was observed with the LLLT-135 J (∼22s; P < .01), LLLT-270 J (∼13s; P = .03), and LLLT-405 J (∼13s; P = .02) compared to placebo (149 ± 23s). Although LLLT-270 J and LLLT-405 J did not show significant differences in muscle activation compared with placebo, LLLT-135 J led to an increased high-frequency content compared with placebo in both limbs at the end of the exhaustion test (P ≤ .03). In conclusion, LLLT increased time to exhaustion in competitive cyclists, suggesting this intervention as a possible nonpharmacological ergogenic agent in cycling. Among the different dosages, LLLT-135 J seems to promote the best effects.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Sports Physiology and Performance
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.