Abstract
The biolistic method is reliable for delivering genes of interest into various species, but low transformation efficiency can be a limiting factor in its application. To test various conditions that could improve peanut transformation via particle bombardment, embryogenic tissues of the peanut cultivar Georgia Green were co-bombarded with two plasmids: one containing a green fluorescent protein gene and one containing a gene of interest plus a selectable marker. The fluorescence in bombarded embryogenic tissues was measured to evaluate transformation efficiency. A 4.6-fold improvement of transformation efficiency was achieved in stably transformed peanut lines by introducing protamine instead of conventional spermidine in a bombardment mixture with 70 ng/shot plasmid DNA and 50 μg/shot gold. Unexpectedly, the reduction of plasmid DNA from 700 to 70 ng/shot produced transgenic lines with significantly increased numbers of transgene copies. To determine the transgene copy number during plantlet regeneration, relative quantitative real-time polymerase chain reaction (qPCR) was established using fluorescently labeled universal library probes. A correlation of 95% was found for estimation of copy number between Southern blot and qPCR data. Given its speed and high-throughput nature, qPCR can be employed as an effective screening tool to separate high copy number events from low copy number events as early as the shoot formation stage of regeneration.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: In Vitro Cellular & Developmental Biology - Plant
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.